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AbBtract-The global viscoelastic response of heterogeneous linear thermoelastic material with
remote boundaries is characterized. Memory effects result from the dissipation of energy due to
microscopic temperature gradients. A Fourier transform technique is used to formulate the problem
as an integral equation in the image space. Using a perturbation expansion, analytical results are
obtained for two- and three-dimensional examples,

I. INTRODUCTION

Thermoelastic damping, i.e. dissipation of mechanical energy due to thermomechanical
coupling and heat conduction can be of significant importance in several cases of practical
relevance. These include dynamic problems in the form of vibrations[l] or wave propa­
gation[2]. When a macroscopic stress or strain is applied to a heterogeneous thermoelastic
medium local stress fluctuations arise. Then, the local temperature gradients generated
through thermoelastic coupling result in an irreversible production of entropy. Under these
conditions a global viscoelastic behavior is to be expected.

Using a heuristic approach Zener[l] studied the case ofpolycrystalline materials where
the heterogeneity is due to grain-to-grain changes in lattice orientation. General granular
media were considered by Buisson et 01.[3] who formulated the problem in terms of integral
equations which were approximately solved by means ofa method ofspatial discretization.
This approach is best suited for granular materials with constant properties within each
grain. However, the analysis becomes more complex as the number of grains increases. A
one-dimensional problem is solved in Ref. [4] using perturbation expansions.

In this work we are concerned with linear thermoelastic materials ofgeneral heterogeneity.
A local neighborhood of the body is idealized as being unbounded in all directions and thus
Fourier methods can be advantageously utilized. Similar techniques have been successfully
used in other studies[5, 6]. The Duhamel and heat equations are transformed into integral
equations in the image space. Then, the effective viscoelastic properties of the homogenized
continuum follow directly from the inverse integral operators. Explicit results of various
orders of approximation can be obtained through a perturbation analysis. This method of
approximation has been extensively used in the past. However, the present approach differs
from previous work (see, e.g. Refs [7,8]) in that the fluctuation stresses are described in
terms ofa stress potential. In addition, the macroscopic or average stress is assumed given.
The main benefit which is derived from this strategy is that computation of the first-order
term in the perturbation expansion involves purely algebraic manipulations. This is in
contrast to displacement formulations based on the use of Green's function which necessi­
tate evaluation offrequently cumbersome integral expressions at any level ofapproximation.
As an example of application of the method, explicit expressions are given for the effective
creep functions of two-dimensional thermoelastic bodies.
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2. GENERAL FORMULATION

2.1. Local behavior
The local behavior of a linear thermoelastic material can be characterized by means

of constitutive relations of the Duhamel-Neumann type

(1)

and the heat equation

(2)

where aij is the Cauchy stress tensor, Gij the infinitesimal strain tensor, Dijkl the isothermal
elastic moduli, f3ij the thermal expansion tensor, 8 denotes the temperature variation from
an initially uniform reference temperature To, c, is the heat capacity at constant deformation
and Kij signifies the thermal conductivity tensor. A subscript comma will be used throughout
to denote partial differentiation.

Equivalently, eqn (I) can be inverted to read

(3)

where Cijkl are the flexibility compliances of the material and one writes

(4)

Furthermore, elimination of Gij between eqns (3) and (2) leads to

(5)

where

(6)

is the heat capacity at constant stress. In addition to the Duhamel and heat equations, eqns
(3) and (5), the stress and strain fields must satisfy the equilibrium and compatibility
equations.

In formulating the above field equations a general microstructural heterogeneity has
been envisioned. This material heterogeneity induces microstructural fluctuation fields
which influence the overall response. The detailed nature of these fluctuations is frequently
of no practical interest although some information regarding the magnitude of the local
fluctuations is sometimes desirable. The analysis that follows aims at providing a link
between microstructural properties and the overall response of the material, as well as
between the macroscopic fields and the local fluctuations.

We assume throughout that a macrosc:opic Cauchy stress tensor (0') is applied at
infinity. The microscopic stress field can be expressed as

(7)

where <5a(x) represents the spatial stress fluctuations. In the same spirit, the microscopic
temperature field can be expressed as the sum of the average temperature (8) and the
temperature fluctuation field <50(x), i.e.

8(x) = (8) +bO(x). (8)

The equilibrium equations are automatically satisfied if the fluctuations stresses derive
from a stress potential '1.., i.e. if
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(9)

where eijk are the components of the permutation tensor. Substituting eqns (7)-(9) into
Duhamel's equation one finds

(10)

Substituting this expression into the compatibility equations

(11)

we obtain

[Ckfpq(x,.s.uveurpevsp)J",."emkienlj +(akl,O).mnemkienfj

= -(Ckfrs(O'rs».mnemkienfj-(akf(O»,mnemkienfj (12)

where we have separated the unknown fluctuation terms from the average values.
Similarly, using eqns (7) and (8) the heat equation becomes

(13)

This equation can be simplified by invoking the assumed adiabaticity conditions on the
remote boundaries. In particular we note that

«K··O .) .) == lim .!- r (K··O.) dV == lim .!- rq dS =0
IJ .J .1 V-ex> V Jv 'J.J.' V-ex> V Js n

(14)

since by assumption the normal flux qn == KUO,inj vanishes on remote boundaries. Taking
the average value of the heat equation, eqn (5), and using eqn (14) we obtain the relation

(15)

or integrating with respect to time

(16)

Finally, noting that (be) = 0 and (bO'ij) = 0 eqn (16) reduces to

(17)

For a given macroscopic stress tensor (a) eqns (12), (13) and (17) constitute a system
of partial differential equations which in principle can be solved for the unknowns X, b9
and (9). A method of solution based on the use of Fourier transforms is presented in the
next section. A summary of basic facts concerning the Fourier transform which are used
in the derivations is given in Appendix A.

2.2. Localization law
Taking the Fourier transform of eqn (12) and using eqn (A3), results in the fonowing

integral equation:
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where following standard notation the symbol A denotes Fourier transform, i.e.

(
I )'OfJ(k) == 2n j(X) e- ih d)x.

Similarly, taking the Fourier transform of the heat equation, eqn (13), one finds

(19)

Furthermore, taking the Laplace transform of this equation results in the following
expression

where the symbol L is used to signify the Laplace transform of a function, i.e.

LI(s) == fj(t) e- SI dt. (22)

On the other hand, using eqns (17) and (A3) the mean value of the temperature field can
be expressed as

(0) = - _I_lim ~fC:(k)M(k)d3k - (To) lim -ViJtX~(k)Mij(k) d 3k
(ca)v-ao V CIT v-co

To
- <c

a
) (a ij ) (aij)' (23)

The limiting process involved in this expression is discussed in Appendix A. Using rep­
resentation (9), eqn (23) can be rephrased as
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«(}) = - (:(1) ~~ ~fe:(k)oO(k) d
3
k

- (~:) J~ ~foai'(k)'k,(k)k",kneilllkCjtl' d
3
k - (~:) (aii ) (qij)' (24)

Eliminating (0) from eqns (18) and (21) with the aid of eqn (24) we arrive at a system of
two coupled integral equations for the unknowns lid and oe

(25)

where the kernels and the forcing terms are defined to be

(26)

k,.) (I )3/2 I. k') (1 )31
2

I • (k k')k k' 1. (k) l' 1 ·.(k')
K(k, ,S = 2n To c(1(k- + 2n sToKii - i i - To (c

tI
) Ctl v~~ V CtI

As can be seen, the integral operator defined by eqns (25) and (26) is hermitian. Under mild
restrictions on the fluctuations of the material properties a simple check reveals that the
integral operator is of the Hilbert-Schmidt type. The prescribed average stress drives
the microscopic fluctuation fields. These vanish identically in the absence of material
heterogeneities.

Formally inverting eqn (25) one obtains

Liij(k; s) = {fHijkl(k, k'; S)Nkl"", (k') d3k'

+fHiik,k' ;s)Nmn(k') d3k'}L(qmn)(S)

== Bijmn(k ;s)L(q_)(s) (27)
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Lb8(k;s) = {fHMk',k;s)Nk1mn(k') d3k'

+ f H(k, k'; s)Nmn(k') d3k'} L<umn)(s)

== Bmn(k; s)L<umn)(s)

where B'ikl and Bu are concentration tensors. Equation (27) represents a localization law
giving the Fourier-Laplace transform of the fluctuation fields as a function of the applied
macroscopic stress.

Remark: It is also possible to utilize a decomposition e= eo+be where

(28)

is the uniform temperature variation generated by the average stresses in a homogeneous
reference material having the average thermomechanical properties. It should be noted that
<be) is not necessarily zero. In terms of this alternative decomposition equations similar
to eqns (25) are obtained in which be replaces oe.

2.3. Effective behavior
Taking averages in Duhamel's equation, eqn (3), and using decomposition (7) and (8)

for stress and temperature results in the following expression:

(29)

Eliminating <e) with the aid of eqn (17) we find

<au) To
<eu) = <CUkl ) <Ukl) - <c

u
) <cuoe) - <cu) <au) <akluk/)

- <~:) <au) <bak/bukl) +<CjklbukI) +<auOO) (30)

or, using the identities <be) = 0, <bUkl) = °
<e;i) = «C;ikl) - <~:) <au) <akl») <Ukl) - ~:~~ <cube)

-<~:) <a.u) <Oa.kIOUkl) +<OC/ikIOUkl) +<oaljoe). (31)

Bringing in eqns (A3) this becomes

<eji) = «Cljkl) - <::) <a. ji ) <ak/») <Ukl) - ~~ ~ f N:n;ik)i.mn(k) d
3
k

- lim ~ fNrck)b8(k) d3k (32)
v-co V J

where Nijkl and NIj are given by eqns (26e) and (26f). Finally, we take the Laplace transform
of this expression and make use of the localization law, eqns (27), to obtain



Global viscoelastic behavior of heterogeneous thermoelastic materials

where

1291

(33)

It is interesting to note that eqn (33) defines a hereditary law of viscoelastic type

(35)

where Jijkl are the creep functions, * is the time convolution operation and d signifies
differentiation with respect to time in a distributional sense. The form of the creep functions
is obtained by taking the Laplace transform of eqn (35)

(36)

and comparing the result to eqn (34), which yields

(37)

It should be noted that the variable senters eqns (26) only through the term "ij(k - k')js.
In the absence of heat conduction this term vanishes identically and rheological effects
disappear.

In conclusion, the effective behavior of a linear thermoelastic body with adiabatic
remote boundaries and heterogeneous microstructure corresponds to that of a linear visco­
elastic material. The effective creep functions have been given in a form whose evaluation
requires inversion of an integral operator. To make further progress the inverse operator
can be approximated by means of a perturbation expansion in the expectation that the
leading terms will provide an adequate description of cases involving mild heterogeneities.
As noted in the introduction, an advantage of the method presented here is that the first
term in the expansion is given by algebraic expressions of a particularly simple form. In
subsequent sections, explicit results are obtained from the general formulation for certain
classes of two-dimensional problems.

3. TWO-DIMENSIONAL ISOTROPIC PROBLEM

3. I. Local behavior
The general equations derived in Section 2 simplify considerably for a two-dimensional,

locally isotropic body. Under these conditions, the spatial distribution of elastic properties
can be defined in terms of the local Young's modulus E and Poisson's ratio v, and the elastic
compliances are of the form

(38)

where Greek indices range from I to 2 and the scalar functions f(x) and g(x) are defined as

for plane stress, and

v
g=­

E
(39)
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1 = (1- 1'2)/£, g=\'(I+v)/£ (40)

for plane strain. Furthermore, the thermal expansion and conductivity tensors take the
fonn

(41 )

and the Duhamel law and heat equation read

where one writes

for plane stress, and

h = 0:,

(42)

(43)

(44)

h = (I + \')0:, (45)

for plane strain.
In what follows, the above equations are rendered dimensionless by introducing nor­

malized space-time variables

(46)

X j =Lx j

where L is some characteristic length of the heterogeneities, and setting

G.p = (/)(J.p

fJ = <h)8

for stresses and temperature and

C.Pyb = C.pybl</)

Ii = h/<h)

(47)

(48)

for the elastic compliances and thennal expansion coefficient. In tenns of dimensionless
variables, the Duhamel law, eqn (42), and the heat equation, eqn (43), can be expressed as

with

€.Il = C.pyJGyb + f).ll lifJ

c6 = (K(J.• ).• -Ella••

c= cl<c), K = K/<K)

To<h)2
E = <c) <I)'

(49)

(50)

The coupling parameter € is usually a small quantity (E « I). Equations (49) are fonnally
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obtained from eqns (42) and (43) by replacing all variables by their dimensionless counter­
part and To bye.

In what follows, we focus on the plane stress case. Passage to plane strain can be
accomplished by making the substitutions

E
E-+ .

I 2 '-v

v
v -+ I "-v

(t. -+ (I + v)tx.

3.2. Localization law
In the plane case, eqns (25) and (26) simplify considerably as a result of the fact that

all quantities are x3-independent and that the only non-zero component of the stress
potential is In, henceforth denoted by l. For simplicity of notation, the superimposed bar
on all dimensionless quantities is henceforth omitted. Furthermore, we use eqns (48) and
(50) to conclude that

(h) ;::: 1, (c) ;::: 1, (K) ;::: 1. (51)

With this simplification, eqns (25) and (26) reduce to

fK·*(k',k,s)Li(k',s) d2k' +fK(k,k',s)Ud(k',s) d2k' == N(k)L(q•• )(s)

where the kernels and the forcing terms are given by

(52)

K'{k,k',s);::: 2
1

A(k,k')](k-k')- 2
1

B(k,k')g(k-k')-ek2 Mi{k) lim -Slk'2 0h*(k')n n ~oo

A(k,k');::: (k1k'l +k2k;)2, B(k,k');::: (k1k'2-k2k'I)2,

K·(k,k',s);::: - -2
1

k 2h(k-k')+k2oh(k) lim -SI c*(k')
n S-oo

, 1 1. , c(k). I. , I 1 A "

K(k,k ,s) == - -c(k-k) - - hm -c*(k)+ - -K(k-k)k k
2n e e 5-00 S 2n es • •

oN.p(k);::: (o](k)-eoh(k»k 2 o"p-(o](k)+og(k»k..kft , N(k);::: (C(k)-h(k»O..,

(53)

and we write k 2 ;::: ki+k~. In deriving the above expressions, use has been made of the
identity

where in the first integral we consider three-dimensional Fourier transforms, whereas in the
last term the Fourier transforms are two-dimensional. Thus, the volume average ( ) reduces
to the plane mean value as a result of the fact that the quantities being averaged are
independent of x3'

To explicate the solution further, we make the additional assumption that fluctuations
in the material parameters are small, i.e.
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be = O(C,) (54)

where t I « I is a small parameter.
By virtue of assumption (54) system (52) involves two small parameters, £1 and the

thermomechanical coupling constant £. Next we seek a solution (X, be) of system (52) of
the form

X= XIO+XOI +Xli +Xzo+Xoz+'"

b(J = bell +bezo +be02 + ...

where the terms of the expansion are characterized by the conditions

(55)

Substituting expansion (55) into system (52) and gathering terms of same order we obtain

11 ~ Z 3
Lbl1(k,s) = sLnap(k,s)L<uaP)(S)+O(&eI)+O(e,)

k 2Li(k,s) = sLf'"p(k,s)L<u"p)(s)+ O(eD+ o(eeD

where the localization tensors naP and rap are given by

(56)

(57)

~ I {bRap(k) I f I [:2' ' ,
Lfap(k,s) = s k 2 - 2nk 2 k'4 b) (k-k )A(k,k)

- bg(k -k')B(k, k')JbN2p(k') d2k'} +W"p(k, s)

with bN2fJ = bRal! at c = 0; i.e.

(58)

3.3. Effeelive behavior
The effective behavior is obtained by particularizing the three-dimensional law, egn

(33), to plane conditions

(59)

or, in terms of Laplace transforms

(60)

Here, the creep functions are given by

sUapylJ(s) = <c"pYlJ)-ebapbYlJ

- !~1{ball (f bc*(k) - bli*(k)s.L!\lJ(k, s) d2k-t fe5li*(k) bNl;(k) dZk)

+ fbNa~*(k)SLf'y~~k,S) d2k}+0(uD+0(en (61)
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in image space, or

_. I ffJNm~*(k) {fJNy6 (k) _ -I-f-I [fJJ(k-k')A(k k')
1~~s k 2 k 2 2nk 2 k,4 'J ,

-fJg(k-k')B(k, k')] fJN~(k')d2k'}d2k-e 1~~±f[fJm/lfJC*(k)-fJm/lfJh*(k)

+ fJNt:(k) ] [fJ
Y6fJC(k)-fJ y6 fJh(k) + fJN1~(k)] e- k2

/ d2k+ 0(e1)+ O(eeD

in terms of time.
This expression can be recast as

where Jm/lyll ( (0) is the long range creep tensor, and

1295

(62)

(63)

In the absence of thermomechanical coupling, e = 0 and viscoelastic effects are not
present in the material. For e > 0, the creep functions JmJ1y6 are seen to have a continuous
relaxation spectrum. Furthermore, the scalars AmjJa.{J (no sum on (X or (J) are real and positive.
Hence, J./I.{J is a Bernstein function[9]. The derivatives of Jmll«{J are alternating, Le.

and for n ~ I

(65)

The instantaneous compliances Jmll«/I(O) of the material can be calculated by setting
1 = 0 in eqn (62) or eqn (63). Alternatively, one can proceed as follows. Since sufficiently
fast loading is adiabatic, the stress-strain relation reads

where the adiabatic compliances are given by

with
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h"1 = f-c··-,
c

(67)

For an clastic material with no thermoelastic coupling, the effective compliances arc givcn
by eqn (62) with e = O. Considering the material defined by expression (65) we get from
eqn (62) by replacing C.Pyb by C~p~L f and 9 by 1and 9 and putting e = 0

J (0) - <cad . 1 fbN:p(k) - 2 . I fbN:p(k)
·Pyb - .PYb>-.t~,s <.1>k4 bNyb(k) d k+.t~,s 2nk4

X {fk~4 [bJ(k-k')A(k,k')-<>,q(k-k')B(k,k')]bNyb(k') d2k'} d2k+0(e~) (68)

with

(69)

It can be shown that this value of the instantaneous compliance equals that obtained by
setting t = 0 in eqn (62) to within terms of O(e1) +O(eeD.

The long range behavior is obtained by letting the time t tend to infinity in eqn (62).
It is readily seen that

(70)

The slope at the origin J~PYb(O) bears some emphasis since knowing J./lyb(O), J.fly6(00) and
J~/lY6(0) we can approximate the material behavior by a Zener type model. Differentiation
of eqn (62) results in

(71)

3.4. Evaluation of the dissipation
From definition (64) it follows that A.Py6 = O(eT). Hence, the difference between the

instantaneous and the long-range compliances is usually very small. This can be verified
directly from eqn (70), which yields

(72)

For example, if the fluctuations in the material properties are such that e\ = 0.1 and the
coupling parameter is e = 0.01 then

i.e. the creep effect is very small. Nevertheless, this small effect may become significant in
some cases of interest such as vibrating systems. This point is addressed in Appendix B.

3.5. Particular case of circularly symmetric spatial correlations
We denote by

PfAk) = bJ*(k) bJ(k)

Pfg(k) = bJ*(k) bg(k)
(73)

the cross power spectra of f and 9 and use similar notation for the power spectra of other
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functions. The power spectra are the Fourier transforms ofthe spatial correlation functions.
Thcn from cqns (70) and (64) wc have

-lJy~e.efl)p'f+ ( -lJ.flel,e/l-lJy~e.efl)Pr,q + b.fllJy~Phh

+(- 2b.flby~ +b.fley~~+ lJY~~.~fI)Phf+ (c5.fI~y~~ + c5y~e.efl)PhlJ

+ «5./1<5),,\ - <5.llel'~IJ - <5y.\~.e/, + ~.~II~y~,\)PIf

+(-lJ.fI~y~~ -lJy~~.efl+2e.~fleye~)PflJ +e.efleye~PlJg] d2k. (74)

If spatial correlations are circularly symmetric, the power spectra depend solely on the
modulus k of k and not on the polar angle 0 = acos k tlk. Since ~ 1 = cos fJ, ~ 2 = sin 0, eqn
(74) involves expressions of the form

where a is a function of 0, and Pff is a function of the modulus k. Under these conditions
it readily follows that:

lim -Sl fa(fJ)pff(k) d2k = ( r
2K

a(O) dO) lim -sl raJ kPfJk) dk
S"'aJ Jo S"'aJ Jk-O

= 2~ (fK a(O) dfJ) (lJf lJf). (75)

Use will be made of similar results involving Pfg, Ph" ... , and of the following identities:

(76)

From the assumption of circular symmetry, the overall response of the material must be
isotropic. Therefore, the macroscopic behavior can be described in terms of two scalar
creep functions such that

Making use of eqns (75) and (76), eqn (74) reduces to

J.flY~(00) -J.fl~(O) = (JI (00) -JI (O»lJ.flc5~ + (J2( 00)-J2(O» (c5..,lJ~ + lJulJh )

=eE(c5c, c5h, c5j, c5g)

where

J I (00) -JI (0) = e{ (c5cc5c) - 2(c5cc5h) + (c5cc5f) - (c5cc5g) + (c5hc5h) - (c5hc5f)

+ (c5hc5g) + i(c5fc5f) - a(c5fc5g) + i(c5gc5g)}

J2(00)-J2(0) = e{i(lJflJf) + ~(c5fc5g) + i(c5gc5g)}.

(77)
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As can be seen, to within first-order terms in E, the long-range behavior is determined
by the cross correlations of the fluctuations in the properties of the material.

The initial slope J~PrJ(O) of the creep function J'PrJ provides a first approximation to
the global viscoelastic behavior. This slope is given by eqn (71) which involves terms of the
form

(78)

But using the fact that (obf loxj) (k) = ikj bf(k), eqn (78) can be written as

(79)

I~ we further assume that the spatial correlation functions of the gradients bfj' bh.i ... are
circularly symmetric, and proceeding as in the derivation of eqn (75) we obtain

(80)

It is interesting to note that this expression involves the correlations of the fluctuation
gradients. Finally we have

2

J~pyJ(O) = - E I E(bc.j , oh.l, ofl' og.)
i= I

where the function E (., ., ., .) is defined in eqn (77)
Similarly, it is readily shown that the nth outer derivative of J'PrJinvolves the nth order

partial derivatives of the fluctuations oe, oh, of, og.

4. CONCLUSIONS

A proof has been given of the fact that the effective behavior of a linear thermoelastic
solid with heterogeneous microstructure subjected to prescribed stresses on remote bound­
aries corresponds to that of a linear viscoelastic material. By performing a perturbation
expansion with respect to two suitably chosen small parameters, first-order approximations
to the j::reep functions of a two-dimensional solid with random microstructure are provided
in closed form. These results incorporate the statistical information afforded by the two­
point correlation functions of the microscopic fluctuations of material properties.

The relaxation time for thermoelastic damping is typically rather small, of the order
of the square of the characteristic length of the microheterogeneities. However, dissipation
due to thermoelastic damping can be substantial in dynamic processes whose characteristic
duration is of the order of the thermal relaxation time. In particular, thermoelastic effects
can be expected to significantly damp the high frequency contents of elastic waves.

Acknowledgements-The authors gratefully acknowledge support from the Brown University NSF Materials
Research Laboratory.
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APPENDIX A

Some basic properties of the Fourier transform are recorded next. The Fourier transform of a function I(x)
of the spacial coordinates x == (x .. X 2, x]) is defined as

For instance, ifI(x) = c = const. one has

j(k) = (2n)]12cc5{k)

where c5{k) signifies the Dirac delta distribution at the origin.
The following standard results are used throughout the paper:

(AI)

(A2)

(A3)

In the first identityI .. and g .. signify the restrictions ofI and 9 to a closed compact subset V of R] containing
the origin. In terms of the limiting process indicated in eqn (A3a), I .. and g.. are to be regarded as members of
two nets of functions obtained by letting the domain Vcover the whole space. For example V can be taken to be
the ball of radius R centered at the origin and the limit in eqn (A3) reduces to letting R ..... 00. It is implicitly
assumed that due to statistical disorder the result is independent of the choice oforigin. For simplicity of notation,
the subindex V in the integrand of eqns (A3) is dropped throughout the paper.

APPENDIX B

Dissipation in a vibrating process
For simplicity, here we consider a one-dimensional solid obeying a creep law of standard Zener type

J(t) = J(oo)-(J(oo)-J(O» e-·'.

The uniaxial stress u is related to the strain e by

u(t) = e *dJ(t)

If a cyclic stress history

u = Uo cos wt

is prescribed, the energy dissipated per cycle is given by

w =nu~J'(O) ,2 W 2
A +w

2 w,l.= ltUo(J(oo)-J(O» W2+,l.2'

To a good approximation, if J(oo)-J(O) is small, the maximum stored elastic energy is given by

(DI)

(B2)

(D3)

(B4)
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E = !J(O)u~.

\I J(OCj)-J(O) WA
E(W)"'21t J(O) W2 +J. 2

(B5)

(B6)

represents the part of the elastic energy E which is dissipated into heat per cycle. This ratio attains its maximum
value when W = ;.

IV J(OCj)-J(O)
E(A) = 1t J(O) . (B7)

The fraction DIE of elastic energy converted into heat per unit time results from dividing WIE by the period 2nlw

As W -> 0Cj this quantity tends to an asymptotic limit

~ ) _ /(OCj)-J(O) _ J'(~

E(OCj - J(O) - J(O)'

For W = ;. we have

(B8)

(B9)

(BIO)

It was noted in Section 3 that J' (0) is inversely proportional to the square of some characteristic length L of the
heterogeneities. Consequently, for small L the fraction DIE may become significant, even if J(oo)-J(O) is small.


